Karyosystematic Studies in Amorphophallus Blume ex Decne.

Authors

  • Shirly Raichal Anil Senior Scientist Central Tuber Crops Research Institute (ICAR-CTCRI), Sreekariyam, Thiruvananthapuram - 695017, Kerala, India
  • Suhara Beevy S Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India
  • Siril EA Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram 695 581, Kerala, India

Keywords:

Amorphophallus paeoniifolius, evolution, wild species, wild relatives, asymmetry index, total form percentage

Abstract

Cytological studies in 25 accessions revealed the occurrence of three chromosome numbers viz., 2n=28 for all  the Amorphophallus paeoniifolius accessions, A. dubius, A. smithsonianus and A. sylvaticus; 2n=26 for A.bonaccordensis, A. hohenackeri and A. commutatus; and 2n=3x=39 for A. bulbifer. Zarco’s asymmetry indices  revealed that the accessions T2 (A. bonaccordensis) and T3 (A. smithsonianus) were the more evolved species interms of karyotype symmetry. According to the classification of Stebbins, A. bonaccordensis included in 3B  category was the most asymmetrical and hence considered as most evolved. Amorphophallus paeoniifolius var.  campanulatus with A1=0.40-0.43 appeared to be more evolved than A. paeoniifolius var. paeoniifolius based on  Zarco’s asymmetry indices. Slight differences observed in the A1 values (0.1714-0.37) in the accessions of A.  paeoniifolius var. paeoniifolius demonstrated the close relationship of the accessions. Taxa with asymmetric  karyotype tend to have low total form (TF)% and accordingly cv. Gajendra (GJ) and cv. Karunaikizhangu (T10)  (both classified as A. paeoniifolius var. campanulatus) having low TF% can be considered as highly evolved  among the A. paeoniifolius accessions. UPGMA clustering based on five karyotypic parameters namely total  chromosome length (TCL), average chromosome length (ACL), chromosome number, TF% and ratio of longest  chromosome (LC) to shortest chromosome (SC) of the complement revealed two principal clusters at a Euclidean  distance of 1.3. The two cultivars of A. paeoniifolius var. campanulatus (GJ and T10) along with A. dubius (A.d)  were clustered in a single sub-cluster. Such clustering pattern is in tune with the morphological data which leads  to make a valid assumption that A. dubius is a possible ancestor of the cultivars GJ and T10.

References

Abraham, Z. and Prasad, P.N. 1983. A system of chromosome classification and nomenclature. Cytologia, 48: 95-101.

Bernardello, L.M. and Anderson, G.J. 1990. Karyotypic studies in

Solanum section Basarthrum (Solanaceae). Am. J. Bot., 77: 420.431.

Chandler, C. 1943. The number of chromosomes in two species of

Amorphophallus. Bull. Torrey Bot. Club, 70: 612-614.

Chauhan, K.P.S. and Brandham, P.E. 1984. Chromosome and DNA variation in Amorphophallus (Araceae). Kew Bull., 40: 745-758.

Gao, Y.D, Zhou, S.D., He, X.J. and Wan, J.2012. Chromosome diversity and evolution in tribe Lilieae (Liliaceae) with emphasis on Chinese species. J. Plant Res., 125: 55-69. doi:10.1007/ s10265-011-0422-1.

Guerra, M. 2008. Chromosome numbers in plant cytotaxonomy:

concepts and implications. Cytogenet. Genome Res., 120: 339- 350.

Hong, D.Y. 1990.Plant Cytotaxonomy. Science Press, Beijing, 439 p.

Huziwara, Y. 1962.Karyotype analysis in some genera of Compositae.

VIII. Further studies on the chromosome of Aster. Am. J. Bot., 49: 116.119.

Jaleel, A.V., Sivadasan, M., Alfarhan, A.H., Thomas, J. and Alatar,

A.A. 2011. Revision of Amorphophallus Blume ex Decne. Sect. Rhaphiophallus (Schott) Engl. (Araceae) in India. Bangladesh J. Plant Taxon., 18: 1-26

Kenton, A.Y., Rudall, P.J. and Johnson, A.R. 1986.Genome size variation in Sisyrinchium L. (Iridaceae) and its relationship to phenotype and habitat. Bot. Gaz., 147: 342.354.

Koffi, K.K., Guy, K.A., Malice, M., Djè, Y., Bertin, P., Baudoin, J.P.

and Bi, I.A.Z. 2009. Morphological and allozyme variation in a collection of Lagenaria siceraria (Molina) Standl. from Côte d’Ivoire. Biotechnol. Agron. Soc. Environ., 13: 257-270.

Krishnan, R., Magoon, M.L. and Bai, K.V. 1970. Karyological studies

in Amorphophallus campanulatus. Canadian J. Gen. Cytology,

: 187-196.

Levin, D.A. 2002.The Role of Chromosome Change in Plant Evolution. Oxford Univ Press, Oxford, UK, 230 p.

Marchant, C.J. 1971.Chromosome variation in Araceae III: Philodendreae to Pythonieae. Kew Bull., 25: 323.329

Marchant, C.J. 1973.Chromosome variation in Araceae I. Acoreae

to Lasieae. Kew Bull., 28: 199-210

Narayan, R.K.J. 1983. Chromosome changes in the evolution of

Lathyrus species. In: Kew Chromosome Conference II,

Brandham, P.E. and Bennet, M.D. (Eds.). London, pp. 243-250.

Narayan, R.K.J. and Durrant, A.1983. DNA distribution in

chromosomes of Lathyrus species. Genetica, 61: 47-53.

Nicolson, D.H. 1987. Araceae. In: A Revised Handbook to the Flora

of Ceylon, Dassanayake, M.D.and Fosberg, F.R. (Eds.).Vol.VI.,

Amerind Publishing Co. Pvt. Ltd, New Delhi, India, pp.17-101.

Pedro, M.R. and Salinas, A.D. 2009. Karyotypic analysis in six

species of Phaseolus L. (Fabaceae). Caryologia, 62: 167-170.

Pereira-Lorenzo, S., Fernandez-Lopez, J. and Moreno-Gonzales, J.

Variability and grouping of Northwestern Spanish

chestnut cultivars. I. Morphological traits. J Am. Soc. Hort. Sci.,

: 183-189.

Peruzzi, L., Leitch, I.J. and Caparelli, K.F. 2009. Chromosome

diversity and evolution in Liliaceae. Ann. Bot., 103: 459.475.

Raghu, A., Deepa, V. C. and Sundaran, K. 1999.A study of Soorana

(Amorphophallus paeoniifolius) the king of tubers. In: Tropical

Tuber Crops in Food Security and Nutrition. Balagopalan, C.,

Nayar, T.V.R., Sundaresan, S. and Lakshmi, K.R. (Eds.). Oxford

and IBH Publishing Co. Pvt. Ltd., Calcutta, India, pp.10-14.

Ramachandran, K. 1977. Karyological studies in four South Indian

species of Amorphophallus. Cytologia, 42: 645-652.

Rees, H.M.and Hazarika, H. 1969. Chromosome evolution in

Lathyrus. Chromosomes Today, 2: 157-165.

Sedayu, A., Eurlings, M.C.M., Gravendeel, B. and Hetterscheid,

W.L.A. 2010. Morphological character evolution of

Amorphophallus (Araceae) based on a combined phylogenetic

analysis of trnL, rbcL and LEAFY second intron sequences. Bot.

Studies, 51: 473-490.

Seijo, J.G. and Fernández, A. 2003.Kar yotype analysis and

chromosome evolution in South American species of Lathyrus

(Leguminosae). Am. J..Bot., 90: 980-987.

Shirly, R.A., Siril, E.A. and Beevy, S.S. 2011. Morphological variability

in 17 wild elephant foot yam (Amorphophallus paeoniifolius)

collections from south west India. Genet. Resour. Crop Evol.,

: 1263-1274.

Shirly, R.A., Siril, E.A. and Beevy, S.S. 2013. Diversity analysis in

Amorphophallus using isozyme markers. Int. J. Veg. Sci., DOI:

1080/19315260.2013.803509.

Sreekumari, M.T. 1992.Cytomorphological and Cytogenetic Studies

in Edible Aroids. Ph.D Thesis. University of Kerala, Trivandrum,

Kerala, 251p.

Stebbins, G.L .1971.Chromosomal Evolution in Higher Plants.

Arnold Publishers Ltd., London, UK, 216 p.

Zarco, R.C.1986. A new method for estimating kar yotype

asymmetry. Taxon, 35: 526-530.

Downloads

Published

2015-01-15

How to Cite

Anil, S. R., S, S. B., & EA, S. (2015). Karyosystematic Studies in Amorphophallus Blume ex Decne. JOURNAL OF ROOT CROPS, 39(2), 39–50. Retrieved from https://ojs338.isrc.in/index.php/jrc/article/view/211

Issue

Section

Research Articles

Most read articles by the same author(s)